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Explicit expressions are given of the energy, angular and linear momentum 
flux (higher multipole moments) in the linear approximation from an 
isolated system of N bodies, within general relativity. 

1. I N T R O D U C T I O N  

The exact Einstein field equations of  an N-body  system can be written 

82 
cqX~X m [(__g)(g~jglm __ gUgJm)] = 167r[(_g)(T~j " q_ t~j)] (1.1) 

where | = ( - g ) ( T  ~j + t ~j) is the Landau-Lifsh i tz  complex and 

3(x - xv(t)) (1.2) 
dxv ~ dx~ j my 

T'J(x, t) = (_g)1/2 2J- d--/- 
V=I 

is, in curvilinear coordinates,  the ene rgy-momentum tensor of  the N point  
masses, g is the determinant  of  the metric tensor g~j, x~ are the source points, 
x the field point,  and t ~j is the pseudo-energy m o m e n t u m  tensor. 

Latin indices (space-time) take the values 0, 1, 2, 3, while Greek  indices 
(space) take the values l, 2, 3. Also, we set G = c = 1. 

We assume that  the N-bodies system is changing slowly, the field is 
everywhere weak, and we do not come closely up to any source point. 

Using the Newtonian  terms of  the Landau-Lifsh i tz  complex 

| = ( - g ) ( T  ~j + t ~j) (1.3) 

we can write 

0~  = (T ~s + t~% 0 .4 )  
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where, when this is done, the pseudotensor t ~j is defined by 

1 8V  8V  23~e 
t~ e = ~ 4 8x ~ ax e 

or (Dionysiou, 1974) 

1 ~ ~ m'm"(x~ - x'~)(x e - t~ e 

7 
t~176 - 8 ~  \ ~ x x ~ ]  ' 

and 

x~) ~(x - x") 

m'  
V =  ~ ix-_ x , 

t ~  = 0 

It is certainly true that the dominant terms of O~ 
explicitly defined as (Dionysiou, 1974) 

(9 ~ = ~ m'8(x - x') 
m '  

0~ = E m'u'~b(x - x') 
m ~ 

|  = E m'u',u'~3(x - x') + t ~B 
m '  

or  

| = E m"u~u~3(x - x") 
m "  

- "21 ~m' Era,, m' m"(X~ix ____~ x'~)(x B - x;) 3(x - x") 

Further we define 

o,~B = f O~dx 
a l l  s p a c e  

(1.5) 

(mod. div.) (1.6) 

(1.7) 

( 1 . 8 )  

are tensors and 

(1.9) 

(1.10) 

(1.11) 

(mod. div.) (1.12) 

(1.13) 

2. DERIVATION OF THE METRIC FAR FROM THE 
N-BODIES SYSTEM 

We start with the definition (Infeld and Plebanski, 1960) 

(_g)lt2g~j = n~j + 7~j (g~J = n ~f + h %  I h~j] << 1) 

where V~J is the metric tensor, which can be written as a matrix 

(n, j )=(~, j )= 0 - 1  0 
0 0 - 1  
0 0 0 - 

(2.1) 
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We impose on y~J the gauge condit ion 

yi~. = 0 (2.2) 

where the comma denotes partial differentiation. 
Hence, the field equations (1.1) in the weak-field region far outside the 

source reduce to (Fock, 1957) 

,m ~j = 16=@~ (2.3) 

Thus, Einstein's equations are equivalent to 

y'J(x, t) = 4 f @~[x', t - Ix - x']] dx' (2.4) 
Ix - x' l  

a l l  s p a c e  

where 

I~--1 ] 1/2 I x -  x'  t = (x~ - x~)/ , dx' = dxldx'2dx'3 
= J 

The integral (2.4) is valid for  any field point  (x, t) even in the region 
between the particles. We interpret equations (2.4) as the gravitational 
radiation produced by the source @~. The occurrence in equations (2.4) of  
the time argument t - Ix - x'[ shows that gravitational effects propagate  
with unit velocity, that  is to say, with the speed of  light. Also, | unlike T ij 
need not  necessarily vanish outside the source region (Section 4). 

Locating the origin of  coordinates inside the region between the particles 
of  the source system, we have for  field points far f rom it (Ix] >> Ix'I) 
(Papapetrou,  1971) 

y*J(r, t) = _4 ( O~[x', t - r + (n.x ' ) ]dx '  + O(r -2) (2.5) 
r d 

a l l  s p a c e  

where ]x - x '  t = r - n .x '  + O(r-1), I x - x ' ] - i  = l l r  + (x x ' ) / l x ?  + ,  
r = Ixl, n = xlr  is the unit vector in the direction of  propagation.  

Now, we expand the integrand of  equation (2.5) in powers of  n. x', i.e., 

O~[x', t - r + (n.x ')]  = O~[x', ( t -  r)] + ( n . x ' ) ~  7 | (t - t)] 

(n. x' )  2 ~2 
+ 2! at 2 @~[x',  (t - r)] + . . .  (2 .5a)  

then equat ion  (2.5)  can be wri t ten  as an e x p a n s i o n :  

= r v=0 ~ ~ O~{[x', (t - r)]  (n .x ' )Vdx ' + O(r -2) (2.6)  
a l l  s p a c e  

I f  the m o t i o n  o f  the part ic les  is suff ic iently s low,  i .e. ,  there is a l imi ta t ion  on  
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the speed of the particles (u' << 1, c = 1), on their acceleration and on higher 
time derivatives, then equation (2.6) may be replaced by an expansion as 

r4 ~176 1 8 ~ = o  ~'! 8t~ f ~Y(r, t) = ~ | (t - r)](n-x')~dx ' + O(t  -2) (2.7) 
a l l  s p a c e  

The convergence of integrals (2.4), (2.6), and (2.7) is given by Section 4. 
Henceforth, the sources | have to be considered at a retarded time t :-- r. 

3. N-POINT MASSES IN SLOW MOTIO N  RADIATING 
GRAVITATIONAL WAVES 

3.1. Energy. For slow motion systems, the only significant contributions 
to equation (2.4) come from a region of size L ~ R << A, where R is the size 
of the source (R = I x'l max) and A (A --- A/2~) the reduced wavelength. We 
confine our attention to field points x far outside the source region, i.e., 

I x l  = r >> L ~> ]x'[ (R << A << Ix I = r)  

We use equation (2.7) and the obvious identity 

t t " - �9 n ! 
n . x  p = F / ~ I X ~ :  1 ~--- F / rz2X~r  2 : ~ ~r 

and can then write 

4f O~dx, + 4 8f ~j, , 4 1 8  2 7~J(r, t )  = r r n~l - ~  O x x ~ i d x  + r n~n~2 2! 8t 2 

f ~ j ,  , , 4 1 8 ~ x |  + " " " + r n~ln~2n~a " " n~v v! 8t ~ 

f O,j , , , O ( r - 2 )  x ' r z v d X  ' x N X ~ c l X ~ c 2 X ~ : a  " " �9 + (3.1) 

where the terms on the right are 1-pole, 2-pole, 4-pole, and so on (Papapetrou, 
1971). 

One can put the conservation laws with the help of the special form 

| = 0 (3.2) 

Applying equations (3.2) one obtains the identities 

82| ~ _ 82| -B 

8t 2 - 8x'~Sx'e 

02 -~,0o . . . .  82 ~ ' ' 2 8 (| + | + 20} a (3.3) 
8t----~ t ~ N  x , xB)  = 8x'~Sx; (On x~x~) - 

(Misner et al., 1973). We suppose 0~ is spatially confined as it is required by 
equation (2.4); then the first and second terms on the right-hand side of 
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equations (3.3) are seen to be zero when we integrate over all space by an 
application of Gauss' theorem. (Gaussian flux integrals are valid only in 
asymptotically flat regions of space-time and in asymptotically Minkowskian 
coordinates.) Hence the results are (see Section 4) 

| t - r )dx '  = 2 at 2 |176176 t - r)x'~x'~dx' (3.4) 

and 

f |162 1 02 f ,~oo , , , -  , iv ~ " ~  = "~ - ~  t~zv x a x ~ x ~ a x  

1 a f r~N x~)x~ 3 at [(Og~x~_ -oo ,, , 

since from equations (3.2), we have 

+ ( o ~ , % -  ~.o~ . . . . . .  ~N x ,ox~ jax  (3.5) 

f 1 82 ( ~ o o  , , , - ,  (| + |167 + @Vx~)dx' - 2 at 2 J ~ n  x~xax~ax (3.6) 

and 

|  x~)dx = (|176 - (3.7) ( ~ . ~  XB ~B ' ' ,~o~ , ,  , - - ,  - -  ~ n  x ~ ) x e a x  

Using the transverse-traceless (TT) gauge condition (Misner, Thorne, 
and Wheeler, 1973), i.e., 

h *~ = 0, h~ = 0, h ~ = 0 (3.8) 

then the gravitational radiation is completely described by the (gauge- 
invariant) transverse-traceless part of the metric perturbation h~J; hence since 

h*J = 7 ~; - �89 + nonlinear expressions (3.9) 

we have from equations (3.8) and (3.9) 

h~T = 7'~" (3.9a) 

The effective stress-energy tensor for the outgoing waves has the form 

oo 1 /.,~B ^,~ ", (3.10) Oaw = ~ \rTT,OrTT,O/ 

where ( ) denotes an average over several wavelengths (in accord with one's 
inability to localize the gravitational radiation inside a wavelength) and ~B 7TT 

means the gauge invariant transverse-traceless part of 7 ~j. Equation (3.10) is 
the formula for radiation from a nearly Newtonian slow-motion source 
(Misner et al., 1973). 
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Then the total power crossing a large sphere of radius r at time t is 

(3.1~) 

or  

and 

2 d ~-2 ( ~ B  ' ' ' 
I~e~2""~fft)  = (,i dt~_ 2 j ~ x ~ x ~ x ~  �9 x'~vdx' , v > 2 (3.18) 

2 d v -  2 
l ~ e ~ " % ( t )  = v! dt ~- ~ (| " 

using equation (1.13). 

�9 x ~ ) ,  v > 2 ( 3 . 1 9 )  

F 

= j O~wr dO EG~(r, t) oo 2 

where ds = r2dO -= r ~ sin OdOd% 0 <<. 0 <~ rr, 0 <<. q~ <~ 2rr. 

Hence 

] f c~t~ c~t~ 2 EGw(r, t) = ~ (YT~,oYrr,o)r dO (3.12) 

Now, using equations (3.1), (3.4), and (3.8) we take 

.e 4 [ 1  ~2  (~.oo . . . .  (1 ~s f 
- ~  ~ N X a X a X ~  1 ( l X  r~(r, t) 7 ~2 ot ~ 3 ~ x.x~ax + n~l~g gi ~ ) ~.oo . . . . .  

, ~  ~ x ~  + ( o ~  - o ~  ' 

1 n ~ % z  ~ j ~ u  x~x~2ax  + " " " + ~  

1 O ~ f a ~ e , . , , . , , . ,  x '~dx ' )  + ~. n ~ n ~ n ~ .  �9 . n ~  - ~  .~u ~ a " "  + O(r-2)  

(3.13) 
The second term of equation (3.13), after integrating, becomes 

r "%~ -~5 mu~xex~  + ~ ,  mx~uBx~ ~ - mx~x~u~ (3.14) 
m 

Considering equation (3.13) we readily verify that 

2 ~ 0 5 
YTT(r,"B t) = r /---" n ~ n ~ n ~ . . . n ~ ,  - ~  I ~ e ~ o ' " ~ ( t  -- r) + O(r -2) 

(3 .15)  

where we have put 

I~B(t) = ~ m x . x a  (3.16) 
m 

U e ~ ( t )  = ~ ,  mu~xex~  + ~ m x . u e x ~  - ~ ,  mx .xeu~ ~ (3.17) 
m m rn 
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I f  we define 

which gives 

D ~  ,~=...,% - I ~ ~.. % _ -}8 ~J  ~ a ~ " %  

D ~ = " %  = 0 

T T  ~ ~ v ~ .  ~ t T T  x 2 v 

(3.20) 

(3.21) 

(3.22) 

then equat ion (3.15) becomes 

- -  ~ ' . . YrT,O = r n~ln~2n~a , , ~ r r -  o - + O(r -2) (3.23) 
v = O  

By making  use of  equations (3.10) and (3.23) we find tha t  

~--- /'/~cx~/~r ' ' ' / / / ~ : v n ~ ' i / ' / ~ 2  " " ' / ' / ~ o  
( ~ a W  ~ v ,  0 

• ( b ~ e ~ " " % O ~ ' q ~ . . . a o  _ 2 n , n f l # , ~ . . . ~  

• ~ q ~ . . . a o  + � 8 9  (3.24) 

since the simplest one is 

Now,  putt ing equat ion (3.24) into equat ion (3.12), we get the final 
answer for  the total  power,  i.e., 

Eaw(r, t) = <�89 ~' + X~o-~ 

• (1 lb~e~b~"~ - 6D~eBD . . . .  6b~e~b  ~ 

+ (terms with 8, I0, 12 . . . .  indices) (3.25) 

To  evaluate Eow(r, t), we use the results 

f n ~ n ~ n ~ .  - �9 n~flO = 1, 3, 5 , . . . ,  (2v + 1) AK~K~a �9 .- ~ @ even) (3.26) 

where A~K2~ a - �9 �9 ~ means all distinct permuta t ion  of  8 ~ .  Also, 

f n ~ i n ~ n ~ . . ,  n~dO = @ odd) (3.27) 0 

3.2. Angular Momentum. The density of  angular  m o m e n t u m  in quad-  
rupo le -quadrupo le  moment s  is g~ven by Misner  et al., (1973), i.e., 

~_~ = 1 e~(--6nBff)~D~Ana + 9n~ff)Y~n~n~Da~n~) (3.28) 8rrr 2 

where < > denotes an average over several wavelengths. 
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The integral of this quantity over a large sphere of radius r, enclosing 
the system of N bodies, is the total angular momentum being transported 
outward per unit time, i.e., 

3 -~= f ~"r2dO (3.29) 
sphere 

where ds = r2dO = t 2 sin OdOd% 0 <<. 0 <~ ,r, 0 <<. cp <~ 2ft. 

Now, the generalization of equation (3.28), i.e., using higher multipole 
moments, gives that 

87rr  2 e c~By //~cx/,/x2 
\ p , , p  =0 

n~,nazna2 " " n A , ( -  6n~na [JrE~l~'"~, b ~ 1 ~ 2 " ' %  

+ 9 ~ b Y ~ 2 " ~ . b ~ z ~ 2 " % ) )  (3.30) 

Here, from equations (3.28) and (3.29), using the integrals (3.26) and (3.27) 
we get in quadrupole-quadrupole moments 

J-~ = --2e"e'<J)~Ei3B'> (3.31) 

In higher multipole moments, from equations (3.29) and (3.30) with the aid 
of the integrals (3.26) and (3.27), we get that 

jB, = ~{</5B~5,, _ fifo fiB,> 

+ b~(3 /5  ~E _ 4b,~B) _ beEv(3b~,~ _ 4 b ~ )  

+ 3 ( b ~ " b  ~ _ bB-b~)]>} 

+ (terms with 8, 10, 12, . . .  indices) (3.32) 

where 
= (y23, y31, ~1~) 

Equation (3.32) gives the total angular momentum of the N-bodies system 
being transported outward per unit time. A similar, but less general, result 
has previously been derived by Papapetrou (1971). 

3.3. Linear Momentum Flux. Considering the outflux of linear momen- 
tum, one may concentrate on the flux of the radial component ~7~, i.e., 

O0 2 P~ = | n j O  (3.33) 
sphere 
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where P~ is the total outftux per unit time of the ~th component of momentum. 
The integral being taken over a large sphere of radius r with n~ the three 
components of the outward normal and the differential solid angle. 

Finally, from equations (3.24), (3.26), (3.27), and (3.33) we get that 

+ (terms with 7, 9, 11 , . . .  indices) (3.34) 

which is the same result in quadrupole-octupole moments as Dionysiou 
(1974, 1975, 1977a). 

In conclusion, we mention that parallel results for an isolated perfect 
fluid have been obtained by the author (Dionysiou, 1977b). 

4. TO JUSTIFY THE CONVERGENCE OF THE INTEGRALS 

The retarded integrals equations have been based on the assumptions 
that the source @g is spatially confined [a remark of importance is that we 
have t oo = t ~ = 0 from equations (1.9) and (1.10). Hence, out of the bound 
material system, there are contributions from t aB only], since Og gives signifi- 
cant contributions to the integrals come only from a region of size Ix' 1 << A. 
Now, in the near zone (Ix'l << Ix[ << ~l) but far from the source, O~v B = t ~ 
varies as 1/r 4. In the radiation zone ([x I >> A) O} e = t ~e varies as 1/r 2. The 
last integrals are ignored in our calculations as second-order effects because 
they have nothing to do with the emission process itself (Misner et al., 1973). 
We have to stress that it is valid since one can neglect the gravitational 
influence of the energy density of the waves as a second-order effect. Generally, 
we can put forth the following argument: Instead of an infinite wave train, 
we may consider a short pulse of gravitational waves. Then, one can verify 
without difficulty that the surface integrals at very large distance vanish (and 
the volume integrals vanish also), since the pulse has still not reached it. 
Of course, other general arguments can be presented about the convergence 
of these integrals (Ehlers et al., 1976). 

A P P E N D I X  

In order to check directly equation (3.4), we have from equations (1.9) 
and (3.16) that 

1 a 2 F ,-,oo . . . .  1 d2I~B 
2 ~t 2 j w~ x~xeax  - 2 dt 2 (A.1) 
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Also, from equations (1.12) and (1.13) we obtain 

f O~dx  = f [~m.,m,,u:u~3(x __ x,,) l~ ~m, ~, ' m'm"(x~ - x'.)(x~ - a 

Dionyslou 

x , ~ ( x  - x")]dx 
1 ~ m'm"(x'~ - ' " x ~ ) ( x ,  - x ; )  

: E - E ix,, _ x, t3 m ' r?u" 

1 mm'(x~ - x')(x~ - x'~) 
= E m u . u , - - ~ E  E i x - x ~  = 2Y.~ + B. B (A.2) 

m m m" 

where Y~ and B,B denote the kinetic energy and the potential energy tensors, 
respectively. Then, from equations (A. 1) and (A.2) 

1 d2/~B = 2 Y~ + B~ B (A.3) 
2 dt 2 

which follows from the standard form of the tensor Virial theorem. 
Here, we define [equation (1.6)] 

f (x ,  t) = g(x, t) (modulo divergence) (A.4) 

if the two functions f ,  g differ by the divergence of a vector, which vanishes 
sufficiently rapidly at infinity, so that their integrals over the whole space are 
equal (assuming that they exist). 
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